

ATMOSPHERIC SCIENCES TEXAS A&M UNIVERSITY

Introduction

Established during the summer 2015 **Student-Operation**al ADRAD Project (SOAP), the Weather

Research and

Forecast (WRF) model running at Texas A&M University operates with 3-kilometer grid spacing as WRF version 3.7 on an IBM iDataplex Cluster supercomputer at TAMU. Closer examinations of two situations are made to determine where TAMU-WRF stands in its performance against other high-resolution models. Qualitative analyses will be

performed for two weather scenarios: a convective squall line and a landfalling tropical storm. The results of these examinations are to be displayed in two and three-dimensional data visualizations.

Model Characteristics

	-	-	-
Model	TAMU-WRF	NSSLWRF	HWRF
Version	3.7	3.4.1	3.6.1
Boundary Conditions	12 km NAM	40 km NAM	GFS
Microphysics	WSM6	WSM6	Ferrier-Aligo
Land Surface Model	NOAH LSM	NOAH LSM	NOAH LSM
Radiation Parameterization	RRTM	RRTM	RRTM-G
Grid Spacing	3 km	4 km	2 km

All models have the same radiation parameterization and land surface model.

Contact Us

Armani Cassel: ac.07.93@gmail.com Jamison McCarthy: jman4@tamu.edu Dr. Chris Nowotarski: cjnowotarski@tamu.edu

TAMU-WRF depicted a more vigorous low-level jet for Case #1, reinforcing moisture for thunderstorms over southeast Texas, possibly resulting in improved simulated reflectivity.

In Case #2, TAMU-WRF performs similarly to HWRF, with similar track and intensity forecasts that are an improvement in comparison to NSSLWRF.

Overall, TAMU-WRF tends to outperform NSSLWRF for these cases.

In this diagram, the blue-shaded isosurface represents a magnitude of 30 knots with streamlines at 850 hPa flowing eastward across west Texas and NNW-ward into SE Texas.

from McIDAS-V 3D Data Field Display

The blue isosurface over SE Texas surrounds a feature known as a low-level jet. Both computer models picked up on an LLJ with TAMU-WRF forecasting a more WRF. The presence of the LLJ likely played a significant vigorous LLJ than the NSSLV role in enhancing and reinforcing moisture ahead of the thunderstorms over Houston.

Comparison of Texas A&M WRF convection-allowing forecasts with other high-resolution models Armani Cassel, Jamison McCarthy and Dr. Chris Nowotarski

for the

McIDAS-V QR Code

TAMU-WRF and NSSLW

WebVR

-Completing further quantitative analyses between TAMUWRF, NSSLWRF and HWRF as well as experimental HRRR data sets

8+in. of rain for the Central Texas coastline

⁵ 15 25 35 45 55 10-HR FCST VALID TUE 150616/ 10-HR FCST VALID TUE 150616/ 1km SIM Reflectivity Model Comparison:

MSLP Contour line comparisons

All of the computer model output on display are from initializations at 06z except F. Before Tropical Storm Bill's forecasted landfall, TAMU-WRF predicted the weakest of the three landfall intensities while N **VRF** gave the stronger and slower forecast track and intensity. Model forecasts after landfall gave similar intensities with **NSSLWRF** remaining the slowest in track speed. Both F have Tropical Storm Bill out of Texas by June 18th.

> Future Work -Visualizing TAMUWRF data in Virtual Reality with

